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Abstract

We present a transparent boundary operator for a high-order spectral element approach for
solving exterior scattering problems governed by a scalar Helmholtz equation. In particular,
we consider incident waves at arbitrary angles impinging on scattering surfaces with periodic
gratings, where the scattering solutions are represented in a quasi-periodic form. We rewrite our
governing equation into a formula that eliminates the quasi-periodicity and solve the reformu-
lated scalar Helmholtz equation with periodic, Dirichlet, and transparent boundary conditions.
We construct a spectral element Dirichlet-to-Neumann boundary operator for the transparent
boundary condition that ensures nonreflecting outgoing waves on the artificial boundaries in
the truncated computational domain. We present an explicit formula that accurately computes
the Fourier data involved in the boundary operator on the spectral element discretization space.
Our solutions are represented by the tensor product basis of the one-dimensional Legendre-
Lagrange interpolation polynomials based on the Gauss-Lobatto-Legendre grids. We study
scattered field solutions in single- and double-layer media with smooth and nonsmooth scatter-
ing surfaces. Geometric structures of the scattering surfaces include rectangular, triangular, and
sawtooth grooves that are accurately represented by the body-fitted quadrilateral elements. We
use a GMRES iteration technique to solve the resulting linear system. We validate our results
provided with spectral convergence in comparison with exact solutions and the results by the
transformed field expansion method, including the energy defect measure.

1 Introduction

Exterior scattering problems arise in many engineering applications in electromagnetics, optics, and
acoustics. Robust and accurate simulation capability has been receiving an increased attention as
a cost-effective tool for predictive measurement and analysis of modern physical systems. Highly
accurate boundary treatment and flexibility to treat complex geometries are essential for solving
exterior scattering problems arising in a broad range of applications.

Many competing numerical methods have been developed, such as the boundary integral and
boundary element methods [1, 3]. These surface methods require discretization only at the interface,
thus significantly reducing the number of unknowns to compute. Depending on the choice of the
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Green’s function, the far-field boundary conditions can be enforced exactly; and these methods
can deliver highly accurate solutions with reduced operation counts. Such methods face a number
of drawbacks, however, including the fact that the inhomogeneities away from the layer interfaces
cannot be accommodated and high-order accuracy can be realized only with specially designed
quadrature nodes, because of the singularities in the Green’s function approach. Moreover, these
methods typically give rise to a dense linear system that requires carefully designed preconditioned
iterative methods with acceleration algorithms for the matrix-vector product, such as fast multipole
methods [9].

As an alternative, boundary perturbation methods have been explored. Bruno & Reitich stud-
ied the method of field expansions [4, 5, 6], and Milder studied the method of operator expan-
sions [11, 12, 13, 15, 16, 14]. These methods solve surface unknowns, thereby enjoying the favor-
able operation counts of surface integral methods, while avoiding the subtle quadrature rules, dense
linear systems, and algorithms for matrix-vector product accelerations. However, these algorithms
depend on strong cancellations, resulting in ill-conditioning [18, 19, 20]. Nicholls and Reitich pro-
posed an enhanced boundary perturbation algorithm, referred to as the method of transformed field
expansions (TFE) [10], which does not rely on strong cancellations. In this approach, the resulting
recursions can be used for a direct, rigorous demonstration of the strong convergence of the relevant
perturbation expansions in an appropriate function space. Furthermore, these formulas were proven
to be a stable and accurate numerical scheme for simulating scattering problems defined on layered
periodic gratings with a generalization to the case of irregularly bounded obstacles [21, 8], and a
rigorous numerical analysis was provided in [22]. However, this method is limited when complex
geometries are considered.

To address the limited simulation capabilities of the boundary methods, we consider a high-order
spectral element method [7]. Specifically, in this paper we introduce a spectral element transparent
boundary operator that has not been studied in the literature for exterior scattering problems.
We focus on the two-dimensional formulation of the boundary operator in spectral element dis-
cretization space, utilizing the Dirichlet-to-Neumann (DtN) map approach [18, 19, 20], where the
formulation involves the normal derivative of the truncated Fourier series of the Dirichlet data on
the artificial boundaries located on the exterior domain [10]. We present an accurate formula for
computing the Fourier data involved in the boundary operator in spectral element discretization
space. In particular, we consider incident waves at arbitrary angles impinging on various types of
surface periodic gratings, resulting in quasi-periodic solutions of the scalar Helmholtz equation. We
rewrite our governing equation into a form that eliminates the quasi-periodicity and solve the refor-
mulated scalar Helmholtz equation with periodic, Dirichlet, and transparent boundary conditions.
We solve various example problems and demonstrate our computational results with validation.
We note that the linear system featured with the quasi-periodicity of the problems and the spectral
element DtN operator does not hold the positive definite Hermitian property. In this work, we
simply use the generalized minimum residual (GMRES) method [24] without preconditioning for
solving the linear system. We leave the study of efficient preconditioning techniques and algorithm
extension to three dimensions as future efforts.

This paper is organized as follows. In Section 2, we define the governing equations for our model
problems and provide formulations. Section 3 discusses the spectral element discretization. Section
4 presents the computational results and their validation. Section 5 summarizes our conclusion.
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2 Formulations

A time-harmonic plane wave of frequency w can be expressed typically in a complex form as

Ū(x, y, t) = U(x, y)e−iwt = eiκ·xe−iwt = ei(αx+βy)e−iwt, (2.1)

where the wave vector κ = (α, β) indicates the propagation direction in a homogeneous medium.
The monochromatic waves U(x, y) with different w satisfy a scalar Helmholtz equation given as

∆U + k2U = 0, k = |κ| = w

c
, (2.2)

where the constant c is the wavespeed of the medium and the wavenumber k is the number of
waves per 2π for real w. Note that both k and w can be either negative or positive, although the
Helmholtz equation is invariant regardless of the sign change of k. Polychromatic waves can be the
sums of waves of different frequencies by taking the forward Fourier transform of U , which relates
to the inverse Fourier transform of Ū as follows:

Ū(x, y, t) =
1

2π

∫ ∞
−∞

e−iwtU(x, y)dw and U(x, y) =

∫ ∞
−∞

eiwtŪ(x, y, t)dt. (2.3)

Here Ū is the solution of the wave equation, and thus the Helmholtz equation (2.2) can be considered
as the frequency-domain formulation of the wave equation:

∂2Ū

∂t2
− c2∆Ū = 0. (2.4)

In this paper, we consider the scalar Helmholtz equation for time-harmonic scattering problems.

2.1 Model Problems

We describe two classes of model problems. Consider exterior scattering problems in single- and
double-layer media as shown in Figure 1. We define the unbounded domains,

Ω+
0 = {y > g(x)} and Ω−0 = {y < g(x)}, (2.5)

with different wave numbers, k+ and k−, given in Ω+
0 and Ω−0 , respectively. We consider the

scatterer boundary denoted by Γg = {(x, y) ∈ R2, y = g(x) ∈ L2(R)}, which represents the shape
of grating structure (smooth or rough) with d-periodicity, not necessarily a unit cell. Here we note
that the total field solutions are quasi-periodic [2], in the sense that

U(x+ d, y) = eiαdU(x, y). (2.6)

For the single-layer model shown in Figure 1(a), a homogeneous Dirichlet boundary is considered
on Γg, using the notation ΓD := Γg for the Dirichlet boundary, and the scattered waves must be
outgoing as y → +∞. For the double-layer model shown in Figure 1(b), the total field is required
to be continuous across the scatterer interface Γg, and the scattered waves must be outgoing as
y → ±∞. These model problems can be described by the Helmholtz equation with proper boundary
conditions defined as follows.

Model 1. The total field U in the single layer, denoting Ω0 = Ω+
0 , is described as

∆U + k2U = 0 on Ω0, (2.7)

U(x+ d, y) = eiαdU(x, y) on Ω0, (2.8)

U(x, y) = 0 on ΓD. (2.9)
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(a) Model 1. Single Layer (b) Model 2. Double Layer

Figure 1: Geometric illustration of the model problems.

Model 2. The total field U in the double layer, denoting Ω0 = Ω+
0 ∪ Ω−0 ∪ Γg, is described as

∆U + k2U = 0 on Ω0, (2.10)

U(x+ d, y) = eiαdU(x, y) on Ω0. (2.11)

2.2 Quasi-Periodic to Periodic Formulation

We consider incident waves at arbitrary angles with α ∈ R. For the normal incident wave (α = 0),
the solution U is still periodic. For an oblique incident wave (α 6= 0), however, the solution is
characterized as quasi-periodic in the x-direction. In our algorithm implementation, it is more
convenient to handle the periodic boundary than the quasi-periodic boundary condition. Thus we
introduce a new variable u as

u(x, y) = e−iαxU(x, y), (2.12)

where u is periodic for any α from the fact that

u(x+ d, y) = e−iα(x+d)U(x+ d, y) = e−iα(x+d)eiαdU(x, y) = u(x, y). (2.13)

Plugging (2.12) into Eqs. (2.7) and (2.10), we solve the reformulated scalar Helmholtz equation:

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0. (2.14)

We note that the first-order derivative term in Eq. (2.14) results from the quasi-periodicity of the
solution U with α 6= 0; hence, we refer to it as a quasi-periodic term. We also note that in general
k2 − α2 can be either positive or negative, although we consider only positive case in this paper.
These properties bring a different nature to our model problems from that of the problems involving
the usual Helmholtz operator.
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2.3 Transparent Boundary Conditions

From the separation of variables, we can express the general solution U for the Helmholtz equa-
tions (2.7) and (2.10) in a Fourier series. Then, applying the d-periodicity in x-direction through
the relation (2.12), the solution u for the governing equation (2.14) on Ω+

0 or Ω−0 can be written as

u(x, y) =
∞∑

p=−∞
ûpe

i(αp−α)xeiβpy, (2.15)

where ûp are the Fourier coefficients of u with αp = α + 2πp
d and β2

p = k2 − α2
p for an integer p.

Defining K =
{
p ∈ Z | k2 − α2

p > 0
}

, we can have

βp = ±
√
k2 − α2

p p ∈ K and βp = ±i
√
α2
p − k2 p 6∈ K. (2.16)

Assume an incident field uinc = ei(αx+βy) defined on Ω+
0 . The total field solution u can be expressed

as the summation of the incident and scattered fields as

u = uinc + uscat, (2.17)

and thus the scattered field solution can be also in the form of (2.15) as

uscat =
∞∑

p=−∞
ûscat
p ei(αp−α)xeiβpy. (2.18)

Consider the propagation direction κ = (α, β) with α > 0 and β < 0 for an incident. Then, the
outgoing waves are allowed only to have either propagating or evanescent modes with

βp =


√
k2 − α2

p p ∈ K

i
√
α2
p − k2 p 6∈ K

on Ω+
0 and βq =

−
√
k2 − α2

q q ∈ K

−i
√
α2
q − k2 q 6∈ K

on Ω−0 . (2.19)

Now, we discuss a boundary operator that maps the solution at infinity in the infinite domain to
the solution on the boundary of a finite domain. Consider the model problems defined on the finite
computational domains, as shown in Figure 1, using the following notations:

Ω+ = {g(x) < y < b} and Ω− = {a < y < g(x)}. (2.20)

Here we define a hyperplane Γ = {(x, y) ∈ R2, y = c∗} such that Γ ∩ Γg = ∅, where the constant
c∗ can represent either a or b for our model problems. Taking the normal derivative of uscat on Γ,
we define a transparent boundary operator T :

T [uscat] |y=c∗=
∂uscat

∂n
|y=c∗= n · ∇uscat |y=c∗ . (2.21)

The operator T maps Dirichlet data to Neumann data on Γ; hence, it is referred as a Dirichlet-to-
Neumann (DtN) operator. For our model problems, the operator T can be expressed as

T [uscat] |y=c∗= ny
∂uscat

∂y
|y=c∗= ny

∞∑
p=−∞

(iβp)û
scat
p ei(αp−α)xeiβpc

∗
, (2.22)
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where the outward unit normal vector is n = (nx, ny) = (0,±1) with a proper set of indices for p
depending on the domain, either Ω+

0 or Ω−0 . On the other hand, the following continuity conditions
should hold for the solutions of (2.14) on Ω+

0 and Ω−0 :

u : continuous across Γ, (2.23)

∂u

∂n
: continuous across Γ. (2.24)

The transparent boundary operator (2.22) satisfies the continuity conditions across Γ. Thus we can
define the outgoing scattered solution on Γ in the reduced finite domains Ω+ and Ω− as

T [u− uinc] =
∂(u− uinc)

∂n
, (2.25)

which can be equivalently written as

∂nu− T [u] = ∂y(uinc)− T [uinc]. (2.26)

2.4 Governing Equations

Defining Γ+ = Γ ⊂ Ω+
0 (if c∗ = b) and Γ− = Γ ⊂ Ω−0 (if c∗ = a), we can summarize our governing

equations for our model problems as follows:

Model 1. For the single layer case, denoting Ω = Ω+, our governing equations are

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0 on Ω, (2.27)

u(x+ d, y) = u(x, y) on Ω, (2.28)

∂nu− T [u] = ρ on Γ+, (2.29)

u = 0 on ΓD, (2.30)

where ρ = ∂y(uinc)− T [uinc].

Model 2. For the double layer case, denoting Ω = Ω+ ∪ Ω− ∪ Γg, our governing equations are

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0 on Ω, (2.31)

u(x+ d, y) = u(x, y) on Ω, (2.32)

∂nu− T [u] = ρ on Γ+, (2.33)

∂nu− T [u] = 0 on Γ−, (2.34)

where ρ = ∂y(uinc) − T [uinc] and the wavenumbers are defined as k = k+ on Ω+ and k = k− on
Ω−. Note that we consider the incident wave uinc only defined on Ω+.

2.5 Variational Formulation

In this section, we derive the variational formulations of our governing equations for the model
problems (2.27)–(2.30) and (2.31)–(2.34). Consider a test function v ∈ H1(Ω). Multiplying v to
(2.27) and (2.31) and integrating them over Ω, whose boundary is denoted by ∂Ω, we have∫

Ω
∇u∇υdΩ−

∫
∂Ω

n · ∇uυdS −
∫

Ω
(k2 − α2)uυdΩ−

∫
Ω

2iα
∂u

∂x
υdΩ = 0. (2.35)
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The surface integrations with the boundary conditions applied on the single layer are∫
∂Ω

n · ∇uυdS =

∫
Γ+

T [u]υdΓ−
∫

Γ+

ρυdΓ−
∫

ΓD

n · ∇uυdΓ, (2.36)

and those for the double layer are∫
∂Ω

n · ∇uυdS =

∫
Γ+

T [u]υdΓ−
∫

Γ+

ρυdΓ +

∫
Γ−
T [u]υdΓ. (2.37)

We seek a solution u ∈ H1(Ω) such that

a(u, υ) = 〈ρ, υ〉 for all υ ∈ H1(Ω), (2.38)

where the sesquilinear form (·) for each model is defined as follows.

Model 1. From (2.35) and (2.36), we have

a(u, υ) =

∫
Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ−

∫
Γ+

T [u]υdΓ. (2.39)

Model 2. From (2.35) and (2.37), we have

a(u, υ) =

∫
Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ−

∫
Γ+

T [u]υdΓ−
∫

Γ−
T [u]υdΓ. (2.40)

The linear functional 〈·〉 in (2.38) is defined for both models as follows:

〈ρ, υ〉 =

∫
Γ+

ρυdΓ. (2.41)

In particular, we define the following notations for the volume integrations:

A(u, υ) =

∫
Ω
∇u∇υdΩ, B(u, υ) =

∫
Ω
uυdΩ, C(u, υ) =

∫
Ω

∂u

∂x
υdΩ, (2.42)

and for the surface integrations:

T (u, υ) =

∫
Γ
T [u]υdΓ, F (ρ, υ) =

∫
Γ+

ρυdΓ, (2.43)

where Γ = Γ+ for the single-layer and Γ = Γ+ ∪ Γ− for the double-layer case. We note that

T (u, υ) = ny

∞∑
p=−∞

iβpûp

∫
Γ
eidpxυdx = ny

∞∑
p=−∞

iβpûp

∫
Γ
e−idpxυdx = ny

∞∑
p=−∞

iβpûpυ̂p, (2.44)

where dp = 2πp
d = αp − α in Eq. (2.22). On the other hand, we have

T (υ, u) = ny

∞∑
p=−∞

iβpυ̂pûp = ny

∞∑
p=−∞

(iβp)ûpυ̂p. (2.45)

The boundary operator T might provide special properties for the following cases: if βp is real

for all p, T (u, υ) = −T (υ, u); if βp is imaginary for all p, T (u, υ) = T (υ, u). In general, however,

T (u, υ) 6= T (υ, u).
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(a) Local Numbering (Unassembled Representation)

(b) Global Numbering (Assembled Representation)

Figure 2: Illustration of a solution vector in a local numbering and a global numbering, using an
example mesh with (E,N) = (2, 3): Ω = Ω1 ∪ Ω2 and the GLL nodes (◦).

3 Spectral Element Discretization

We denote our computational domain as Ω = ∪Ee=1Ωe, where Ωe represents nonoverlapping body-
conforming quadrilateral elements. Let us define a finite-dimensional approximation space VN ⊂
H1(Ω) such that VN = span{ψij(ξ, η)}Ni,j=0. With this choice of approximation space, we consider
a local approximate solution ue(x, y) ∈ VN , or simply ue, that has the representation

ue(x, y) =
N∑

i,j=0

ueijψij(ξ, η). (3.1)

The basis coefficients ueij are the nodal values ue(xi, yj) on Ωe, and the basis ψij(ξ, η) = `i(ξ)`j(η),
or simply ψij , has a tensor product form of the one-dimensional Nth-order Legendre-Lagrange
interpolation polynomials given as

`i(ξ) = [N(N + 1)−1(1− ξ2)L′N (ξ)]/[(ξ − ξi)LN (ξi)] for ξ ∈ [−1, 1], (3.2)

based on the Gauss-Lobatto-Legendre (GLL) quadrature nodes ξi with the Nth-order Legendre
polynomial LN and its derivative L′N . We map each physical coordinate (x, y) ∈ Ωe onto the
reference domain (ξ, η) ∈ I = [−1, 1]2 through the Gordon-Hall mapping [7] and formulate compu-
tational scheme on the reference domain.

Let us denote our numerical solution u on Ω as with vector representations as

u := (u1, u2, ..., ul̂, ..., un) := (u1, u2, ..., ue, ..., uE)T , (3.3)

ue := (ue1, u
e
2, ..., u

e
l , ..., u

e
(N+1)(N+1))

T := (ue00, u
e
10, ..., u

e
ij , ..., u

e
NN )T , (3.4)
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where n = E(N+1)2 is the total number of basis coefficients and l̂ = 1+i+j(N+1)+(e−1)(N+1)2

and l = 1 + i+ j(N + 1) translate the two-index coefficient representation into a vector form, with
the leading index i. In Figure 2, we show a mesh with two elements E = 2 including the GLL grids
for N = 3 on Ω = Ω1 ∪ Ω2. Figure 2(a) illustrates a local ordering of a solution vector u based
on the two-index expression in an unassembled representation for the coincident grids, u1

3i = u2
0i

(i = 0, ..., 3), appearing redundantly. In Figure 2(b), we demonstrate the same solution vector in a
global ordering in an assembled representation using only the distinct nodes, denoted by

u = (u1, u2, ..., un̄)T . (3.5)

The size (n̄ < n) of the solution vector u in the assembled representation is reduced after elimi-
nating the redundancy from the coincident grids. In practice, our implementations are based on
elementwise computations using the data structure in the local ordering. The global ordering is
used when it is more convenient to describe our method in this paper.

3.1 Stiffness Matrices

To obtain the stiffness matrix, we consider the following inner product in Eq. (2.42):

A(u, υ) =

∫
Ω
∇u · ∇υdΩ =

∫
Ω

(
∂u

∂x

∂υ

∂x
+
∂u

∂y

∂υ

∂y

)
dΩ, (3.6)

where the partial derivatives are expressed by the chain rule for x = x(ξ, η) and y = y(ξ, η) on Ωe:

∂u

∂x

∂υ

∂x
=

(
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

)(
∂υ

∂ξ

∂ξ

∂x
+
∂υ

∂η

∂η

∂x

)
=

∂u

∂ξ

∂υ

∂ξ

(
∂ξ

∂x

∂ξ

∂x

)
+
∂u

∂η

∂υ

∂η

(
∂η

∂x

∂η

∂x

)
+
∂u

∂ξ

∂υ

∂η

(
∂ξ

∂x

∂η

∂x

)
+
∂u

∂η

∂υ

∂ξ

(
∂ξ

∂x

∂η

∂x

)
=

∂u

∂ξ

∂υ

∂ξ
Gξξxx +

∂u

∂η

∂υ

∂η
Gηηxx +

∂u

∂ξ

∂υ

∂η
Gξηxx +

∂u

∂η

∂υ

∂ξ
Gξηxx, (3.7)

∂u

∂y

∂υ

∂y
=

(
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

)(
∂υ

∂ξ

∂ξ

∂y
+
∂υ

∂η

∂η

∂y

)
=

∂u

∂ξ

∂υ

∂ξ

(
∂ξ

∂y

∂ξ

∂y

)
+
∂u

∂η

∂υ

∂η

(
∂η

∂y

∂η

∂y

)
+
∂u

∂ξ

∂υ

∂η

(
∂ξ

∂y

∂η

∂y

)
+
∂u

∂η

∂υ

∂ξ

(
∂ξ

∂y

∂η

∂y

)
=

∂u

∂ξ

∂υ

∂ξ
Gξξyy +

∂u

∂η

∂υ

∂η
Gηηyy +

∂u

∂ξ

∂υ

∂η
Gξηyy +

∂u

∂η

∂υ

∂ξ
Gξηyy , (3.8)

introducing the short notations, Gξξxx, Gηηxx, Gξηxx, Gξξyy, Gηηyy , and Gξηyy , for the geometric factors. Using
the expansion (3.1) for u, υ ∈ VN , we derive the discrete operator for (3.6) including (3.7)–(3.8) as

AN (u, υ) =

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υe
îĵ

(∫
I

∂ψij
∂ξ

∂ψîĵ
∂ξ
Ḡ11Jdr +

∂ψij
∂ξ

∂ψîĵ
∂η
Ḡ12Jdr

)
ueij (3.9)

+

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υe
îĵ

(∫
I

∂ψij
∂η

∂ψîĵ
∂ξ
Ḡ21Jdr +

∂ψij
∂η

∂ψîĵ
∂η
Ḡ22Jdr

)
ueij , (3.10)

where Jdr = Jdξdη. On each local element, the Jacobian J and the geometric factors, defined by

Ḡ11 = (Gξξxx + Gξξyy), Ḡ12 = (Gξηxx + Gξηyy), (3.11)

Ḡ21 = (Gξηxx + Gξηyy), Ḡ22 = (Gηηxx + Gηηyy ), (3.12)
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are introduced from the coordinate transformation and computed from the following relation:

J =

∣∣∣∣∣ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ from

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
≡
(

1 0
0 1

)
. (3.13)

We apply the numerical quadrature on the GLL nodes for the integrations in Eqs. (3.9)–(3.10) as∫
I

∂ψij
∂ξ

∂ψîĵ
∂ξ
Ḡ11dr =

N∑
k,m=0

Ḡ11
kmJkmwkwml

′
i(ξk)lj(ηm)l′

î
(ξk)lĵ(ηm), (3.14)

∫
I

∂ψij
∂ξ

∂ψîĵ
∂η
Ḡ12dr =

N∑
k,m=0

Ḡ12
kmJkmwkwml

′
i(ξk)lj(ηm)l̂i(ξk)l

′
ĵ
(ηm), (3.15)

∫
I

∂ψij
∂η

∂ψîĵ
∂ξ
Ḡ21dr =

N∑
k,m=0

Ḡ21
kmJkmwkwmli(ξk)l

′
j(ηm)l′

î
(ξk)lĵ(ηm), (3.16)

∫
I

∂ψij
∂η

∂ψîĵ
∂η
Ḡ22dr =

N∑
k,m=0

Ḡ22
kmJkmwkwmli(ξk)l

′
j(ηm)l̂i(ξk)l

′
ĵ
(ηm), (3.17)

where Ḡ(·)
km and Jkm represent the geometric values and the Jacobian at the nodal points, respec-

tively, and wk and wm are the one-dimensional GLL quadrature weights. Note that Ḡ12
km = Ḡ21

km.
We now have (3.6) in a discrete form as the following:

AN (u, υ) =

E∑
e=1

(υe)T
[

Dξ

Dη

]T [
G11 G12

G21 G22

]e [
Dξ

Dη

]
ue (3.18)

=
E∑
e=1

(υe)TDTGeDue =
E∑
e=1

(υe)TAeue, (3.19)

where the differentiation matrices with respect to ξ and η, Dξ and Dη, respectively, are written as

Dξ = I⊗ D̂ and Dη = D̂⊗ I (3.20)

in a tensor product form of the one-dimensional differentiation matrix D̂ki = l′i(ξk) and the identity
matrix I in R(N+1)×(N+1). The entries of the one-dimensional differentiation matrix are

D̂ij =
LN (ξi)

LN (ξj)(ξi − ξj)
(i 6= j); D̂00 = −(N + 1)N

4
; D̂NN =

(N + 1)N

4
; D̂ii = 0, (3.21)

which is skew-centrosymmetric D̂ij = −D̂N−i,N−j . Equation (3.18) involves the pointwise multipli-

cation of the nodal values ue = [uel ] by each diagonal component of G(·) = [G
(·)
l ] = diag{Ḡ(·)

kmJkmwkwm}
for l = k+ (N + 1)(m−1) on the nodal points on each local element Ωe. Let us denote the stiffness
matrix on Ω as A, using the local stiffness matrices Ae, represented by

A =


A1

. . .

Ae

. . .

AE

 with Ae = DTGeD. (3.22)
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Then we can write Eq. (3.18) simply as

AN (u, υ) = vTAu. (3.23)

Here we note that the matrix A is symmetric from the fact that

(Ae)T = (DTGeD)T = DT (Ge)TD = DT (Ge)D = Ae. (3.24)

Arithmetic Operations: The matrix A is never explicitly formed. We perform matrix-matrix
multiplication acting only on the block diagonal matrices Ae. We begin with the tensor product
based derivative evaluations (3.18) that can be recast as matrix-matrix products on each element:

uξ := (I⊗ D̂)ue := D̂[u]e, (3.25)

uη := (D̂⊗ I)ue := [u]eD̂T , (3.26)

where ue is a vector arranged in columnwise consecutive entries of ueij , advancing with the leading
index (i) as shown in (3.4). In (3.25), ue is treated as an (N + 1)× (N + 1) matrix, denoted by [u]e

as

[u]e =

 ue00 ue01 ... ue0N
...

...
. . .

...
ueN0 ueN1 ... ueNN

 . (3.27)

This requires 2E(N+1)3 operations on Ω. The pointwise multiplications with the geometric factors
ux = G11uξ + G12uη and uy = G21uξ + G22uη require 6E(N + 1)2 operations. Then we compute
the summation of transposed derivative operators, Dξux+Dηuy, involving 4E(N+1)3 +E(N+1)2

operations. Thus the total operation for Au is 6E(N+1)3 +7E(N+1)2. The leading-order storage
requirement for the factored stiffness matrix is 3E(N + 1)2, because of the relation G12 = G21 on
Ωe.

Direct Stiffness Summation: The solution vector in (3.23) is based on the unassembled repre-
sentation, recalling Figure 2(a), without applying the continuity at the element interface between
neighboring elements. To construct the solution vector to be continuous across element interfaces
on the coincident nodal values,

(xij , yij)
e = (xîĵ , yîĵ)

ê → ueij = uê
îĵ

for e 6= ê, (3.28)

we introduce a Boolean connectivity matrix Q [7] that maps the global representation u to the
local representation u, and its transpose QT that maps the local representation u to the global
representation u. Then we can define the following:

u = Qu and u∗ = QTu. (3.29)

The action of Q on u returns the copy entries of u on the coincident nodes, referred as the scatter
operation. The action of QT on u returns u∗ with the sum entries of u on the coincident nodes,
referred as the gather operation. The interior nodes are unchanged from both of the actions. Using
these matrices, we can rewrite Eq. (3.23) for the continuous solution u as

AN (u, υ) = vTQTAQu = vT Āu. (3.30)

For a continuous solution u in the local ordering representation, the following equivalence holds:

QTAQu ⇐⇒
(
QQT

)
Au. (3.31)

11



We note that the gather-scatter operation QQT can be viewed as a single operation, involving
summation of the variables on the shared interface nodes and redistribution of them to their original
locations within one communication. The operation is referred as direct stiffness summation, or
simply dssum. In this paper, we use the following notation for the gather-scatter operation:

dssum := QQT . (3.32)

In practical implementations, we write our algorithms in an element-based format by utilizing
matrix-vector products evaluated independently on each local element. Thus it is natural to consider
the dssum approach and perform the local-to-local transformation as in the right-hand side of
(3.31), that is, dssum(Au). We build a local-to-global mapping array to handle the actions of Q
and QT without constructing Q and QT explicitly. A detailed description of the algorithms and
parallel implementations can be found in Chapter 4 and Chapter 8 of [7].

3.2 Mass Matrices

To obtain the mass matrix, we consider the following inner product:

B(u, υ) =

∫
Ω
uυdΩ, (3.33)

which can be discretized as

BN (u, υ) =
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

(∫
Ωe

ψijψîĵdΩ

)
ueij =

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

(∫
I
ψijψîĵJdr

)
ueij

=
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

 N∑
k,m=0

Jkmwkwmli(ξk)lj(ηm)l̂i(ξk)lĵ(ηm)

ueij

=

E∑
e=1

(υe)TJe
(
M̂⊗ M̂

)
ue =

E∑
e=1

(υe)TBeue, (3.34)

where M̂ = diag{wk} is the one-dimensional mass matrix and Je = [Jell] = diag{Jkm} for l =
k + (N + 1)(m− 1). We can denote the mass matrix B, using the local mass matrix Be as

B =


B1

. . .

Be

. . .

BE

 with Be = Je(M̂⊗ M̂), (3.35)

which is fully diagonal. Then we can write Eq. (3.34) simply as

BN (u, υ) = vTBu. (3.36)

For continuous solution, Eq. (3.36) in the assembled representation can be expressed as

BN (u, υ) = vTQTBQu = vT B̄u. (3.37)
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3.3 Quasi-Periodic Matrix

We consider the following inner product for the quasi-periodic operator in Eq. (2.35):

C(u, υ) =

∫
Ω

∂u

∂x
υdΩ, (3.38)

which can be discretized as

CN (u, υ) =

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

(∫
Ωe

∂ψij
∂x

ψîĵdΩ

)
ueij =

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

(∫
I

∂ψij
∂x

ψîĵJdr

)
ueij

=

E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

υeij

 N∑
k,m=0

Jkmwkwml
′
i(ξk)lj(ηm)l̂i(ξk)lĵ(ηm)

ueij

=
E∑
e=1

(υe)TJe
(
M̂⊗ M̂D̂

)
ue =

E∑
e=1

(υe)TJe
(
M̂⊗ Ĉ

)
ue =

E∑
e=1

(υe)TCeue. (3.39)

By convention, (3.38) could be referred as a convective operator in computational fluids. In this
context, this relates to the quasi-periodic term in (2.14) for the oblique incident (α 6= 0). Thus we
refer to it as a quasi-periodic operator, because the operator is a derivative, resulting from imposing
the periodicity for the quasi-periodic solution in (2.12). Then, we define quasi-periodic matrix C
on Ω using the local quasi-periodic matrices as

C =


C1

. . .

Ce

. . .

CE

 with Ce = Je(M̂⊗ Ĉ). (3.40)

We can write Eq. (3.39) simply as

CN (u, υ) = vTCu. (3.41)

For the continuous solution, Eq. (3.41) in the assembled representation can be expressed as

CN (u, υ) = vTQTCQu = vT C̄u. (3.42)

3.4 Spectral Element Dirichlet-to-Neumann Boundary Operator

In this section, we formulate a spectral element discretization for the transparent boundary operator

or simply DtN (Dirichlet-to-Neumann) boundary operator T . Let us denote Γ = ∪Êê=1Γê, where
Γê = Ωê ∩ ∂Ω are nonoverlapping DtN boundary surfaces on the local elements Ωê. We define a
dtn-to-local mapping array that contains the indices of the DtN surface nodes (i, j, ê) to the local
index (i, j, e) := dtn-to-local(i, j, ê). We note that the DtN boundary nodes in y fall on the index
either with j = 0 or with j = N , which will be represented simply by a fixed index as j = jb.

DtN Matrix T: We can represent our approximate solution on Γê in the form of (3.1) as

uê(x, b) =

N∑
i,j=0

uêijli(ξ)lj(η(b)) =

N∑
i=0

uêijb li(ξ). (3.43)

13



From Eqs. (2.43)–(2.44), we have

T (u, υ) =

∫
Γ
T [u]υdΓ =

∫
Γ

( ∞∑
p=−∞

iβpûpe
idpx

)
υdx =

∞∑
p=−∞

iβpûp

∫
Γ
eidpxυdx, (3.44)

where dp = 2πp
d and ûp are the one-dimensional Fourier coefficients of u(x, b) on Γ given as

ûp =
1

L

∫ L

0
u(x′, b)e−idpx

′
dx′ ≈ 1

L

Ê∑
ê=1

∫
Γê

uê(x′, b)e−idpx
′
dx′. (3.45)

Plugging (3.45) into (3.44) with a finite expansion of T [u] (|p| ≤ P ) and applying (3.43), we have

TN (u, υ) =

P∑
p=−P

iβp

 1

L

Ê∑
ê=1

∫
Γê

uê(x′, b)e−idpx
′
dx′

 Ê∑
ē=1

∫
Γē

eidpxυdx

 (3.46)

=
P∑

p=−P
iβp

 N∑
i=0

 1

L

Ê∑
ê=1

uêijb

∫
Γê

li(ξ)e
−idpx′dx′

 Ê∑
ē=1

∫
Γē

eidpxυdx

 . (3.47)

Choosing υ = l̂i(ξ) with a different index set of î on each Ωê and defining the following,

sê,pi =
1√
L

∫
Γê

li(ξ)e
−idpx′ dx′ and sē,−p

î
=

1√
L

∫
Γē

l̂i(ξ)e
idpx dx, (3.48)

we can express (3.44) in a simplified form as

TN (u, υ) =

Ê∑
ê=1

N∑
i=0

uêijb

 P∑
p=−P

iβp

(
sê,pi

) Ê∑
ē=1

sē,−p
î

 =

Ê∑
ê=1

N∑
i=0

uêijbT
ê
îi
. (3.49)

Here we note that sê,−pi is the complex conjugate of sê,pi from the following:

sê,pi =
1√
L

∫
Γê

li(ξ)e−idpx dx =
1√
L

∫
Γê

li(ξ)e
idpx dx = sê,−pi . (3.50)

Thus we need only to compute sê,pi for p ≥ 0 to obtain

T ê
îi

= i

β0s
ê,0
i

Ê∑
ē=1

sē,0
î

+

P∑
p=1

[
βps

ê,p
i + β−ps

ê,p
i

] Ê∑
ē=1

sē,p
î

 , (3.51)

where βp = β−p only if α = 0i; βp 6= β−p for α 6= 0. Therefore, no particular relation can be found
between βp and β−p in general. Here T ê

îi
is a complex number, so we can alternatively write (3.49)

as

TN (u, υ) =
Ê∑
ê=1

N∑
i=0

uêijbT
ê
îi

=
Ê∑
ê=1

N∑
i=0

uêijb

[
(T ê
îi

)real + i(T ê
îi

)imag

]
. (3.52)

Now, we can map the values of T ê
îi

into a matrix Te =
[
Te
l̂l

]
for l̂ = î+(N+1)j and l = i+(N+1)j

from the dtn-to-local mapping (̂i, j, e) := dtn-to-local(̂i, jb, ê) and (i, j, e) := dtn-to-local(i, jb, ê).
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Similarly, {uêijb} can be mapped to the local data {ueij}. Note that the entries of Te are zeros
if the indices are not indicating the DtN boundary nodes. We now have Eq. (3.49) in the local
representation form as

T N (u, υ) =

E∑
e=1

(υe)TTeue = vTTu = vT (Tr + iTi)u, (3.53)

where Tr and Ti represent the real and imaginary part of the complex matrix T. Thus we have
the assembled representation of (3.53) as

T N (u, υ) = vTQTTQu = vT T̄u = vT (T̄r + iT̄i)u. (3.54)

For ρ in (2.43), we apply notations similar to those used for u. Then we have the following:

FN (ρ, υ) =

E∑
e=1

(υe)TBeρe = vTBρ = vTFρ, (3.55)

with the assembled representation as

FN (ρ, υ) = vTQTBQρ = vT F̄ρ. (3.56)

Compute Matrix T: We next discuss how to compute sê,pi in Eq. (3.51). Note that the data is
precomputed only one time. One might apply the GLL quadrature for the integrations when dp
is small. For large dp, however, the GLL quadrature is not accurate enough to capture the high-
frequency modes. One can consider the discrete FFT algorithm since it is the pth component of the
inverse DFFT of function li(ξ). However, li(ξ) has only a very small portion of compact support
on Γ, so we can compute it directly on its local compact support using refined GLL quadrature
points on each Γê. Another approach is to use the relation to the Bessel function, which can be
more efficient than the other approach.

In this paper, we discuss the computation of sê,pi based on the Bessel function representation.
We have written li(ξ) in the finite expansion of the mth-order Legendre polynomials given as

li(ξ) =
N∑
m=0

(l̂i)mLm(ξ), (3.57)

where (l̂i)m are the Legendre expansion coefficients defined by

(l̂i)m =
2m+ 1

2

∫ 1

−1
li(ξ)Lm(ξ)dξ. (3.58)

Then, substituting (3.57) in (3.48) and using simply the notation x, instead of x′, we have

sê,pi =
1√
L

∫
Γê

li(ξ(x))e−idpxdx =
1√
L

N∑
m=0

(l̂i)m

(∫ 1

−1
Lm(ξ)e−idpx(ξ)J êsdξ

)
, (3.59)

where J ês is the surface Jacobian on Γê. In fact, each Γê is represented by an interval [xêmin, x
ê
max] with

the coordinate transformation by x(ξ) = âeξ+b̂e with âe = (xêmax−xêmin)/2 and b̂e = (xêmax+xêmin)/2,
so that J ês ≡ âe is constant on Γê. Then, Eq. (3.59) becomes

sê,pi =
âe√
L

N∑
m=0

(l̂i)md
p,ê
m with qp,êm =

∫ 1

−1
Lm(ξ)e−idp(âeξ+b̂e)dξ. (3.60)
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Now we need to compute the two terms (l̂i)m and qp,êm , in (3.60). To compute (l̂i)m, one might
apply the GLL quadrature for the integration term in (3.58) as follows:

(l̂i)m =
2m+ 1

2

N∑
k=0

li(ξk)Lm(ξk)wk =
2m+ 1

2
Lm(ξi)wi. (3.61)

An alternative approach is to evaluate (3.57) on the GLL grids in [−1, 1], resulting in the form

LL̂ =

 L0(ξ0) L1(ξ0) · · · Lm(ξ0)
...

...
...

...
L0(ξN ) L1(ξN ) · · · Lm(ξN )


 (l̂0)0 · · · (l̂i)0 · · · (l̂N )0

...
...

...
...

(l̂0)N · · · (l̂i)N · · · (l̂N )N

 ≡ I, (3.62)

and compute the inverse of the matrix L = [Lji] = [Li(ξj)] to obtain L̂ = [L̂mi] = [(l̂i)m] = L−1.

To compute qp,êm , we recall that the Legendre polynomials are related to the Bessel functions as∫ 1

−1
Lm(ξ)e−ixξdξ =

1

im

√
2π

x
Jm+1/2(x) =

2

im
jm(x) for x ∈ R, (3.63)

where jm is the spherical Bessel function and Jm is the ordinary Bessel function with the relation

jm(x) =

√
π

2x
Jm+1/2(x). (3.64)

Then, we can write

qp,êm =

∫ 1

−1
Lm(ξ)e−idp(âeξ+b̂e)dξ = e−idpb̂e

(
2

im
jm(dpâe)

)
. (3.65)

From (3.61) and (3.65), we have the final form of sê,pi by

sê,pi =
âee
−idpb̂e
√
L

N∑
m=0

(l̂i)m

(
2

im
jm(dpâe)

)
. (3.66)

3.5 Matrix Structures and Eigenvalues

In this section, we discuss a complete set of our SE scheme including boundary conditions, provided
with the matrix structures and eigenvalue distributions for the operators. We arrange our solution
as a single real vector with the length of 2n expressed by uN = [uNr , u

N
i ]T where uNr and uNi

represent real and imaginary part of the solution. The SE discretization leads to a linear system:

HuN = F , (3.67)

where

H :=

[
A− (k2 − α2)B + Tr −Ti − 2αC

Ti + 2αC A− (k2 − α2)B + Tr

]
and F :=

[
Fρr

Fρi

]
. (3.68)

The Eq. (3.67) in the assembled representation can be expressed as

H̄uN = F̄ , (3.69)
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Table 1: Condition numbers for H̄
DtN (top) DtN (top/bottom)

E N Condition # E N Condition #

3×2

3 1.187394774856384e+02

3×2

3 5.954213579989568e+01
5 4.600292693443866e+02 5 2.347021228844633e+02
7 1.170405666580731e+03 7 5.902204731597798e+02
9 2.400022447753930e+03 9 1.203134665072308e+03
11 4.290943675185254e+03 11 2.143766952778180e+03
13 6.985462356603306e+03 13 3.482577618583732e+03

(a) H̄ with DtN/Dirichlet (top/bottom)

(b) H̄ with DtN/DtN (top/bottom)

Figure 3: Matrix structures (assembled): E = 3× 2 and N = 3.
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where

H̄ :=

[
Ā− (k2 − α2)B̄ + T̄r −T̄i − 2αC̄

T̄i + 2αC̄ Ā− (k2 − α2)B̄ + T̄r

]
and F̄ :=

[
F̄ρ

r
F̄ρ

i

]
. (3.70)

We demonstrate the matrix structures for our SE operators for different set of the boundary con-
ditions in Figures 3(a)–3(b), provided with their eigenvalue distributions on the right panels. In
Table 1, we demonstrate the condition numbers for those operators. We solve the linear system
(3.69) using the generalized minimum residual (GMRES) method [24].

4 Computational Results

In this section, we examine exterior scattering problems with three types of scattering surfaces:
smooth flat, smooth curved, and nonsmooth surface periodic gratings. We consider different angles
of incident impinging on the scattering surface in single- and double-layer media. We solve the scalar
Helmholtz equation featured with quasi-periodicity and compute the total field in a finite compu-
tational domain with transparent boundary condition based on the spectral element discretization.
For validation of our computational approach, we examine the scattered field solution. For the
cases of smooth flat surface periodic gratings, we compare our results with analytic solutions and
provide convergence studies. For smooth curved surface periodic gratings, we consider sinusoidal
grooves and compare our results with those from the TFE method [22]. For nonsmooth surface
periodic gratings, we consider rectangular, triangular, and sawtooth grooves in double-layer media
and demonstrate our computational solutions provided with the convergence results measured by
the energy defect [4, 5, 6, 23].

4.1 Smooth Flat Scattering Surfaces

We consider single- and double-layer media with smooth flat surface periodic gratings in the x-
direction. Dirichlet and DtN boundary conditions are applied in the y-direction. For these config-
urations, there exist analytic solutions for incident waves at arbitrary angles κ = (α, β).

Single Layer Consider a finite computational domain Ω = [0, 2π]×[0, 1] with the scattering surface
defined by Γg = {(x, y) ∈ Ω|y = 0} and transparent boundary defined on Γ = {(x, y) ∈ Ω|y = 1}.
We apply the homogeneous Dirichlet boundary condition on the soft scatterer Γg and the DtN
boundary operator on Γ. Figure 4(a) shows our quadrilateral element mesh with E = 4 × 4 and
the GLL grids for N = 8. Considering a given incident field U exact

inc impinging on Γg, we have the
total field solution U exact as

U exact
inc (x, y) = ei(αx−β(y+1)), (4.1)

U exact(x, y) = ei(αx−β(y+1)) − ei(αx+β(y−1)), (4.2)

where β =
√
k2 − α2. For a fixed wavenumber k = 1.5 in the single layer medium, we consider

incident waves for α = 0.1 and α = 1.0. Figures 4(b)–4(c) show the numerical solutions of the
scattered fields that are obtained by subtracting the incident field from the total field: UN

scat =
UN −UN

inc, where UN
inc denotes the incident field U exact

inc evaluated on the GLL grids.

Double Layer Consider a computational domain Ω = [0, 2π]× [−1, 1] with the scattering surface
Γg = {(x, y) ∈ Ω|y = 0} and transparent boundaries defined on Γ = Γ+ ∪ Γ− for Γ+ = {(x, y) ∈
Ω|y = 1} and Γ− = {(x, y) ∈ Ω|y = −1}. We apply the DtN boundary operator on the GLL points
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(a) Mesh and GLL grids with E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: with α = 0.1 (left) and α = 1.0 (right)

Figure 4: Single layer: k = 1.5 (yellow); DtN (top) and Dirichlet (bottom) boundaries.

(a) Mesh and GLL grids with E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

Figure 5: Double layer: k = 1.5 (yellow) and k = 2.5 (blue); DtN (top/bottom) boundaries.
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(a) Single layer with smooth flat scattering surface

(b) Double layer with smooth flat scattering surface

Figure 6: Convergence, GMRES iteration counts, and mesh with E=4×4 and N=3,5,7,9,11,13,15.
The approximation order for the Fourier expansion in the DtN operator is P = 5.
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on Γ. Figure 5(a) shows our mesh with E = 4× 4 and the GLL grids for N = 8. The incident field
and analytic solution are given as follows:

• On Ω+ = [0, 2π]× [0, 1] with k+ = 2.5 and β =
√

(k+)2 − α2:

U exact
inc (x, y) = ei(αx−βy), (4.3)

U exact(x, y) = ei(αx−βy) + c+ei(αx+βy). (4.4)

• On Ω− = [0, 2π]× [−1, 0] with k− = 1.5 and β =
√

(k−)2 − α2:

U exact(x, y) = c−ei(αx−βy). (4.5)

Here the constants are defined by c− = 2β+/(β+ + β−) and c+ = (β+ − β−)/(β+ + β−) for
β− =

√
(k−)2 − α2 and β+ =

√
(k+)2 − α2. We consider incoming incident waves on Ω+ for

α = 0.1 and α = 1.0 and compute the total field solutions. We note that the total field is
continuous across the surface interface Γg, so the continuity condition is applied. In Figures 5(b)–
5(c), we demonstrate the scattered field solutions UN

scat.

Convergence Figure 6 demonstrates convergence studies, measured in the maximum error, for
the scattered fields in the single- and double-layer media:

error = ‖U exact
scat −UN

scat‖∞, (4.6)

where U exact
scat = U exact−U exact

inc is the exact solution for the scattered field. The errors show spectral
convergence as N increases. The approximation order for the Fourier data used in the DtN operator
is P = 5. Table 1 shows the condition numbers increasing as N increases, which explains the errors
dropping only up to the 1e-10 level at best when using the GMRES algorithm. Figures 6(a)–6(b)
demonstrate the iteration count increasing up to ∼ 900 for N = 15.

Computation In practice, we transform UN
inc into uNinc = e−iαxUN

inc and compute the solution of
Eq. (2.14) uN with periodic boundary treatment in x and other boundary conditions in y. Then,
we transform back to UN through the relation UN = eiαxuN . This approach makes our algorithm
much simpler, by eliminating additional boundary treatment in the x-direction. The same idea is
applied for solving all other example problems presented in the remaining sections.

4.2 Smooth Curved Scattering Surfaces

In this section, we examine single- and double-layer media with smooth curved surface periodic
gratings in the x-direction. Dirichlet and DtN boundary conditions are applied in the y-direction.
For these configurations, no analytic solutions are available. We validate our results in comparison
with the results by the TFE method [10].

Single Layer Consider a computational domain Ω = [0, 2π]× [g(x), 1] with the scattering surface
defined by Γg = {(x, y) ∈ Ω|y = g(x)} and a transparent boundary defined on Γ = {(x, y) ∈ Ω|y =
1}. We choose a sinusoidal groove g(x) = ε cos(x) with the grating depth varying with ε. We
apply the homogeneous Dirichlet boundary condition on Γg and the DtN boundary operator on Γ.
Figure 7(a) demonstrates the mesh with E = 4 × 4 and the GLL grids for N = 8, representing
g(x) with surface fitted elements for the case of ε = 0.1. We consider the incident field Uinc(x, y) =
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(a) Mesh and GLL grids: E = 4× 4, N = 8

(b) Real part of the scattered field uN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field uN
scat: α = 0.1 (left) and α = 1.0 (right)

Figure 7: Single layer: k = 1.5 (yellow); DtN (top) and Dirichlet (bottom) boundaries.

(a) Mesh and GLL grids: E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

Figure 8: Double layer: k = 1.5 (yellow) and k = 2.5 (blue); DtN (top/bottom) boundaries.
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(a) Single layer with smooth curved scattering surface

(b) Double layer with smooth curved scattering surface

Figure 9: Convergence, GMRES iteration counts, and mesh with E=4×4 and N=3,5,7,9,11,13,15.
The approximation order for the Fourier expansion in the DtN operator is P = 5.
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ei(αx−βy) with varying incident angles α = 0.1 and α = 1.0 for a fixed wavenumber k = 1.5, where
β =
√
k2 − α2. We demonstrate the scattered field solutions in Figures 7(b)–7(c).

Double Layer Consider a computational domain Ω = Ω− ∪Ω+, consisting of two different media
Ω+ = [0, 2π] × [g(x), 1] and Ω− = [0, 2π] × [−1, g(x)] with a sinusoidal groove g(x) = ε cos(x) at
the interface. We define the DtN boundaries on Γ = Γ+ ∪ Γ− for Γ+ = {(x, y) ∈ Ω|y = 1} and
Γ− = {(x, y) ∈ Ω|y = −1}. Figure 8(a) demonstrates the mesh with E = 4 × 4 and the GLL
grids for N = 8, representing g(x) with surface-fitted elements for the case of ε = 0.1. We consider
incoming incident waves Uinc(x, y) = ei(αx−βy) on Ω+ with varying incident angles of α = 0.1 and
α = 1.0, where β =

√
(k+)2 − α2 with k+ = 1.5. We define the wavenumber k− = 2.5 on Ω−. In

Figures 8(b)–8(c), we show the scattered field solutions.

Convergence Figure 9 demonstrates the convergence of our numerical solutions, measured in the
maximum error, for the scattered field in the single and double-layer media in comparison with the
results by the TFE method:

error = ‖UTFE
scat −UN

scat‖∞, (4.7)

where UTFE
scat is the scattered field solutions by the TFE method. Our solution UN

scat on the GLL
grids is interpolated on the TFE grids to compute the difference of the solutions on the same grids.
The approximation order for the Fourier data used in the DtN operator is P = 5. In Figure 9, the
errors show spectral convergence as N increases with the GMRES iteration count increasing up to
1700 ∼ 1900 for N = 15, as demonstrated in Figures 9(a)–9(b).

4.3 Nonsmooth Scattering Surfaces

In this section, we define the energy defect measure and examine solution behaviors in double-layer
media with rectangular, triangular, and sawtooth grooves for the nonsmooth scattering surfaces.
We demonstrate the scattered field solutions and the convergence results using the energy defect.

Energy Defect From the grating theory in optics [17], the field outside the groove region can be
represented as a series of propagating and evanescent waves, known as the Rayleigh expansion [25].
In general, the Rayleigh expansion is not valid to describe the field inside the groove region. Al-
though the Rayleigh assumption has a limited validity and application, the method has received
the attention from many scientists in the related field. Thus we still consider the energy defect
measure based on the Rayleigh analysis to validate our results.

Recalling the unbounded subdomains, Ω−0 and Ω+
0 , defined in (2.5) and some notations from

Eqs. (2.15)–(2.19), we can express our solution U± on Ω±0 as

U+(x, y) =
∞∑

p=−∞
Bpe

iαpx+iβpy, U−(x, y) =
∞∑

q=−∞
Bqe

iαqx+iβqy, (4.8)

where Bp and Bq are the pth and qth Rayleigh amplitudes. The diffraction efficiency is defined by

ep =
βp
β
|Bp|2 and eq =

βq
β
|Bq|2, (4.9)

which satisfy the principle of conservation of energy [23] for lossless media:∑
p∈K

ep +
∑
q∈K

eq = 1. (4.10)

24



To measure the errors of our numerical solutions, we define the energy defect as the following:

εdefect =

∣∣∣∣∣∣1−
∑
p∈K

ẽp +
∑
q∈K

ẽq

∣∣∣∣∣∣ , (4.11)

where ẽp and ẽq are the numerical values of ep and eq, respectively.

Double Layer We consider a computational domain Ω = Ω− ∪ Ω+ with Ω+ = [0, 2π] × [g(x), 1]
and Ω− = [0, 2π] × [−1, g(x)], including rectangular, triangular, and sawtooth grooves for the
scattering surface g(x), as shown in Figures 10–11. The DtN boundaries are defined on Γ = Γ+∪Γ−

for Γ+ = {(x, y) ∈ Ω|y = 1} and Γ− = {(x, y) ∈ Ω|y = −1}. We consider incoming incident
waves U inc(x, y) = ei(αx−βy) on Ω+ for varying incident angles of α = 0 and α = 0.2, where
β =

√
(k+)2 − α2 with k+ = 1.5. The wavenumber k− = 2.5 is defined on Ω−. Figures 10–11

show our scattered field solutions. In Table 2, we demonstrate the convergence of our numerical
solutions measured in the energy defect, showing spectral convergence as N increases and the
GMRES iteration counts increase up to 700 ∼ 1400 for N = 9. The approximation order for the
Fourier data used in the DtN operator is P = 5.

Table 2: Convergence of the energy defect εdefect and GMRES iteration count.
Rectangular Groove

Normal Incident α = 0 Oblique Incident α = 0.2

E N εdefect iter # E N εdefect iter #

64

3 0.435242267233201E-03 226

64

3 0.429733011584389E-03 309
5 0.713931319988130E-06 447 5 0.701378632226984E-06 638
7 0.496637989992147E-09 704 7 0.488022389935916E-09 1001
9 0.793883477475295E-12 998 9 0.139609937066155E-11 1412

Triangular Groove

Normal Incident α = 0 Oblique Incident α = 0.2

E N εdefect iter # E N εdefect iter #

48

3 0.696253818432494E-02 160

48

3 0.679565627532674E-02 177
5 0.481138116928589E-04 321 5 0.470743511331757E-04 349
7 0.135466868981619E-06 515 7 0.131819941857974E-06 556
9 0.208358811685609E-09 728 9 0.187316446415671E-09 782

Sawtooth Groove

Normal Incident α = 0 Oblique Incident α = 0.2

E N εdefect iter # E N εdefect iter #

48

3 0.140770920619001E-01 182

48

3 0.136634700043256E-01 186
5 0.474567719102777E-04 359 5 0.464225820540073E-04 368
7 0.133787198504839E-06 563 7 0.130213210270290E-06 574
9 0.194617803354428E-09 803 9 0.182961906878679E-09 813

5 Conclusions

We studied quasi-periodic solutions of the scalar Helmholtz equation in two dimensions for exterior
scattering problems defined on single- and double-layer media with periodic surface grating struc-
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(a) Rectangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (64, 7)

(b) Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N)=(48,7)

(c) Sawtooth groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

Figure 10: Real part of the scattered field solutions.
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(a) Rectangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (64, 7)

(b) Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

(c) Sawtooth groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

Figure 11: Imaginary part of the scattered field solutions.
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tures. We used body-fitted quadrilateral element meshes with spectral element discretization based
on the GLL grids. For nonreflecting outgoing waves on the truncated computational domain bound-
aries, we introduced an accurate formulation of the spectral element DtN boundary operator by
representing the Fourier data in relation to the Bessel function—instead of computing the Fourier
coefficients using the GLL quadrature integration, which can cause loss of accuracy depending on
the grid resolution. Because of the quasi-periodicity and DtN boundary operator, the resulting lin-
ear system does not have any special property such as Hermitian positive definite. Thus we applied
the GMRES algorithm for solving the linear system. We demonstrated our computational results
for the scattered field profiles and their validation with convergence studies showing spectral conver-
gence. Our future efforts include the algorithm extension to three dimensions and the development
of efficient preconditioning techniques with reduced iterations for large-scale simulations.

Acknowledgments

This work is supported by the U.S. Department of Energy, under Contract DE-ACO2-O6CH11357.
We thank Paul Fischer for helpful discussion regarding the GMRES routines available from the
Nek5000 code.

References

[1] Prasanta Kumar Banerjee and Roy Butterfield. Boundary element methods in engineering
science. McGraw-Hill, UK, 1981.

[2] Alex Barnett and Leslie Greengard. A new integral representation for quasi-periodic fields and
its application to two-dimensional band structure calculations. J. Comp. Phys., 229:6898–6914,
2010.

[3] Marc Bonnet. Boundary integral equation methods for solids and fluids. Wiley, 1999.

[4] Oscar P. Bruno and Fernando Reitich. Numerical solution of diffraction problems: A method
of variation of boundaries. J. Opt. Soc. Am. A, 10(6):1168–1175, 1993.

[5] Oscar P. Bruno and Fernando Reitich. Numerical solution of diffraction problems: A method of
variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities.
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